Published: 一 12 十一月 2018
By andrew
In python .
机器学习介绍
机器学习是一个系统,可以通过自我改进从实例中学习,而不需要程序员明确编码。机器学习将数据与统计工具相结合以预测输出。机器学习与数据挖掘和贝叶斯预测建模密切相关。机器接收数据作为输入,使用算法来制定答案。
典型的机器学习任务是提供推荐。对于拥有Netflix帐户的用户,所有电影或系列推荐都基于用户的历史数据。科技公司正在使用无监督学习来改善个性化推荐的用户体验。
机器学习还用于各种任务,如欺诈检测,预测维护,投资组合优化,自动化任务等。
机器学习与传统编程
在传统的编程中,程序员在与正在开发软件的行业专家协商时编写所有规则。每条规则都基于逻辑,机器将按逻辑语句执行输出。当系统变得复杂时,需要编写更多规则,很难维护。
机器学习输入和输出提炼规则。每当有新数据时,算法根据新数据和经验进行调整,以提高效率。
机器学习如何运作?
机器学习的方式与人类相似,从经验中学习。机器学习的核心目标是学习和推理。首先,机器通过发现模式来学习。这一发现归功于数据。数据科学家的一个关键部分是仔细选择要为机器提供哪些数据。用于解决问题的属性列表称为特征向量。您可以将特征向量视为用于解决问题的数据子集。
机器使用一些奇特的算法来简化现实并将此发现转换为模型。因此,学习阶段用于描述数据并将其概括为模型。
例如,机器试图了解个人工资与去高档餐馆的可能性之间的关系。事实证明,工资与去高端餐厅之间为正比:这就是模型。
构建模型时 …
read more