pandas有强大的excel数据处理和导入处理功能,本文简单介绍pandas在csv和excel等格式方面处理的应用及绘制图表等功能。
pandas处理excel依赖xlutils, OpenPyXL, XlsxWriter等库。
-
python处理excel库的参考:https://github.com/china-testing/python-api-tesing
-
本文代码地址:https://github.com/china-testing/python-api-tesing/tree/master/pandas/excel_demo
更多参考资料:
https://www.dataquest.io/blog/excel-and-pandas/
Using Pandas to Read Large Excel Files in Python 中文
Foundations for Analytics with Python From Non-Programmer to Hacker - 2016.pdf
Python for Data Analysis, 2nd Edition - 2017.pdf
pandas数据读取概述
读写文本
Function | Description |
---|---|
read_csv | Load delimited data from a file, URL, or file-like object; use comma as default delimiter |
read_table | Load delimited data from a file, URL, or file-like object; use tab ('\t') as default delimiter |
read_fwf | Read data in fixed-width column format (i.e., no delimiters) |
read_clipboard Version of | Read_table that |
pages | |
read_excel | Read tabular data from an Excel XLS or XLSX file |
read_hdf | Read HDF5 files written by pandas |
read_html | Read all tables found in the given HTML document |
read_json | Read data from a JSON (JavaScript Object Notation) string representation |
read_msgpack | Read pandas data encoded using the MessagePack binary format |
read_pickle | Read an arbitrary object stored in Python pickle format |
read_sas | Read a SAS dataset stored in one of the SAS system’s custom storage formats |
read_sql | Read the results of a SQL query (using SQLAlchemy) as a pandas DataFrame |
read_stata | Read a dataset from Stata file format |
read_feather | Read the Feather binary file format |
参数主要涉及索引、类型推理和数据转换、日期时间处理、迭代、脏数据。
-
技术支持 (可以加钉钉pythontesting邀请加入) qq群:144081101 591302926 567351477
-
道家技术-手相手诊看相中医等钉钉群21734177 qq群:391441566 184175668 338228106 看手相、面相、舌相、抽签、体质识别。服务费50元每人次起。请联系钉钉或者微信pythontesting
接口自动化性能测试数据分析人工智能从业专家一对一线上培训大纲
ex1.csv的内容如下:
1 2 3 4 | a,b,c,d,message
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
|
读取:
1 2 3 4 5 6 7 | In [9]: df = pd.read_csv('examples/ex1.csv')
In [10]: df
Out[10]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
|
还可以改用read_table读取
1 2 3 4 5 6 | In [11]: pd.read_table('examples/ex1.csv', sep=',')
Out[11]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
|
ex2.csv的内容如下:
1 2 3 | 1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
|
可以使用header=None表示没有列名,也可以用names自行指定列名,还可以使用index_col将列作为索引。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | In [13]: pd.read_csv('examples/ex2.csv', header=None)
Out[13]:
0 1 2 3 4
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
In [14]: pd.read_csv('examples/ex2.csv', names=['a', 'b', 'c', 'd', 'message'])
Out[14]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
6.1
In [15]: names = ['a', 'b', 'c', 'd', 'message']
In [16]: pd.read_csv('examples/ex2.csv', names=names, index_col='message')
Out[16]:
a b c d
message
hello 1 2 3 4
world 5 6 7 8
foo 9 10 11 12
|
csv_mindex.csv的内容:
1 2 3 4 5 6 7 8 9 | key1,key2,value1,value2
one,a,1,2
one,b,3,4
one,c,5,6
one,d,7,8
two,a,9,10
two,b,11,12
two,c,13,14
two,d,15,16
|
建立层级索引:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | In [18]: parsed = pd.read_csv('examples/csv_mindex.csv',
....: index_col=['key1', 'key2'])
In [19]: parsed
Out[19]:
value1 value2
key1 key2
one a 1 2
b 3 4
c 5 6
d 7 8
two a 9 10
b 11 12
c 13 14
d 15 16
|
用正则表达式处理混合的分隔符:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | In [20]: list(open('examples/ex3.txt'))
Out[20]:
[' A B C\n',
'aaa -0.264438 -1.026059 -0.619500\n',
'bbb 0.927272 0.302904 -0.032399\n',
'ccc -0.264273 -0.386314 -0.217601\n',
'ddd -0.871858 -0.348382 1.100491\n']
In [21]: result = pd.read_table('examples/ex3.txt', sep='\s+')
In [22]: result
Out[22]:
A B C
aaa -0.264438 -1.026059 -0.619500
bbb 0.927272 0.302904 -0.032399
ccc -0.264273 -0.386314 -0.217601
ddd -0.871858 -0.348382 1.100491
|
ex4.csv的内容:
1 2 3 4 5 6 7 | # hey!
a,b,c,d,message
# just wanted to make things more difficult for you
# who reads CSV files with computers, anyway?
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
|
skiprows可以忽略行
1 2 3 4 5 6 | In [24]: pd.read_csv('examples/ex4.csv', skiprows=[0, 2, 3])
Out[24]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
|
ex5.csv的内容:
1 2 3 4 | something,a,b,c,d,message
one,1,2,3,4,NA
two,5,6,,8,world
three,9,10,11,12,foo
|
可以指定哪些值为缺失值,甚至可以针对行指定缺失值。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | In [26]: result = pd.read_csv('examples/ex5.csv')
In [27]: result
Out[27]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo
In [28]: pd.isnull(result)
Out[28]:
something a b c d message
0 False False False False False True
1 False False False True False False
2 False False False False False False
In [29]: result = pd.read_csv('examples/ex5.csv', na_values=['NULL'])
In [30]: result
Out[30]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo
In [31]: sentinels = {'message': ['foo', 'NA'], 'something': ['two']}
In [32]: pd.read_csv('examples/ex5.csv', na_values=sentinels)
Out[32]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 NaN 5 6 NaN 8 world
2 three 9 10 11.0 12 NaN
|
pandas.read_csv和pandas.read_table的常用参数如下:
Argument | Description |
---|---|
path | String indicating filesystem location, URL, or file-like object |
sep or delimiter | Character sequence or regular expression to use to split fields in each row |
header | Row number to use as column names; defaults to 0 (first row), but should be None if there is no header row。 |
index_col | Column numbers or names to use as the row index in the result; can be a single name/number or alist of them for a hierarchical index |
names | List of column names for result, combine with header=None |
skiprows | Number of rows at beginning of file to ignore or list of row numbers (starting from 0) to skip. |
na_values | Sequence of values to replace with NA. |
comment | Character(s) to split comments off the end of lines. |
parse_dates | Attempt to parse data to datetime; False by default. If True, will attempt to parse all columns.Otherwise can specify a list of column numbers or name to parse. If element of list is tuple or list, willcombine multiple columns together and parse to date (e.g., if date/time split across two columns). |
keep_date_col | If joining columns to parse date, keep the joined columns; False by default. |
converters | Dict containing column number of name mapping to functions (e.g., |
dayfirst | When parsing potentially ambiguous dates, treat as international format (e.g., 7/6/2012 -> June 7,2012); False by default. |
date_parser | Function to use to parse dates. |
nrows | Number of rows to read from beginning of file. |
iterator | Return a TextParser object for reading file piecemeal. |
chunksize | For iteration, size of file chunks. |
skip_footer | Number of lines to ignore at end of file. |
verbose | Print various parser output information, like the number of missing values placed in non-numericcolumns. |
encoding | Text encoding for Unicode (e.g., 'utf-8' for UTF-8 encoded text). |
squeeze | If the parsed data only contains one column, return a Series. |
thousands | Separator for thousands (e.g., ',' or '.'). |
更多参考:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
CSV
使用pandas读写csv
pandas_parsing_and_write.py
1 2 3 4 5 6 7 8 | import pandas as pd
input_file = r"supplier_data.csv"
output_file = r"output_files\1output.csv"
data_frame = pd.read_csv(input_file)
print(data_frame)
data_frame.to_csv(output_file, index=False)
|
当然也可以用python实现:
1csv_simple_parsing_and_write.py
1 2 3 4 5 6 7 | input_file = r"supplier_data.csv"
output_file = r"output_files\1output.csv"
with open(input_file, newline='') as filereader:
with open(output_file, 'w', newline='') as filewriter:
for row in filereader:
filewriter.write(row)
|
2csv_reader_parsing_and_write.py
1 2 3 4 5 6 7 8 9 10 11 | import csv
input_file = r"supplier_data.csv"
output_file = r"output_files\2output.csv"
with open(input_file, 'r', newline='') as csv_in_file:
with open(output_file, 'w', newline='') as csv_out_file:
filereader = csv.reader(csv_in_file, delimiter=',')
filewriter = csv.writer(csv_out_file, delimiter=',')
for row_list in filereader:
filewriter.writerow(row_list)
|
过滤特定行
- 选择供应商名字包含Z或者Cost大于600的行
pandas_value_meets_condition.py
1 2 3 4 5 6 7 8 9 10 11 12 | import pandas as pd
input_file = r"supplier_data.csv"
output_file = r"output_files\3output.csv"
data_frame = pd.read_csv(input_file)
data_frame['Cost'] = data_frame['Cost'].str.strip('$').astype(float)
data_frame_value_meets_condition = data_frame.loc[(data_frame['Supplier Name']\
.str.contains('Z')) | (data_frame['Cost'] > 600.0), :]
data_frame_value_meets_condition.to_csv(output_file, index=False)
|
注意pandas的strip连里面的内容都可以清除, 有点类似replace的功能。
- 选择符合一个集合的数据:
选择日期为'1/20/14', '1/30/14'的行
1 2 3 4 5 6 7 8 9 10 11 12 | import pandas as pd
input_file = r"supplier_data.csv"
output_file = r"output_files\4output.csv"
data_frame = pd.read_csv(input_file)
important_dates = ['1/20/14', '1/30/14']
data_frame_value_in_set = data_frame.loc[data_frame['Purchase Date']\
.isin(important_dates), :]
data_frame_value_in_set.to_csv(output_file, index=False)
|
- 用正则表达式选择数据
pandas_value_matches_pattern.py
1 2 3 4 5 6 7 8 9 10 | import pandas as pd
input_file = r"supplier_data.csv"
output_file = r"output_files\4output.csv"
data_frame = pd.read_csv(input_file)
data_frame_value_matches_pattern = data_frame.ix[data_frame['Invoice Number']\
.str.startswith("001-"), :]
data_frame_value_matches_pattern.to_csv(output_file, index=False)
|
过滤特定列
- 选择0,3列
pandas_column_by_index.py
1 2 3 4 5 6 7 8 9 | import pandas as pd
import sys
input_file = r"supplier_data.csv"
output_file = r"output_files\6output.csv"
data_frame = pd.read_csv(input_file)
data_frame_column_by_index = data_frame.iloc[:, [0, 3]]
data_frame_column_by_index.to_csv(output_file, index=False)
|
pandas_column_by_index.py
1 2 3 4 5 6 7 8 9 | import pandas as pd
input_file = r"supplier_data.csv"
output_file = r"output_files\7output.csv"
data_frame = pd.read_csv(input_file)
data_frame_column_by_name = data_frame.loc[
:, ['Invoice Number', 'Purchase Date']]
data_frame_column_by_name.to_csv(output_file, index=False)
|
pandas_select_contiguous_rows.py
1 2 3 4 5 6 7 8 9 10 | import pandas as pd
input_file = r"supplier_data_unnecessary_header_footer.csv"
output_file = r"output_files\11output.csv"
data_frame = pd.read_csv(input_file, header=None)
data_frame = data_frame.drop([0,1,2,16,17,18])
data_frame.columns = data_frame.iloc[0]
data_frame = data_frame.reindex(data_frame.index.drop(3))
data_frame.to_csv(output_file, index=False)
|
添加行头
pandas_add_header_row.py
1 2 3 4 5 6 7 8 | import pandas as pd
input_file = r"supplier_data_no_header_row.csv"
output_file = r"output_files\11output.csv"
header_list = ['Supplier Name', 'Invoice Number', \
'Part Number', 'Cost', 'Purchase Date']
data_frame = pd.read_csv(input_file, header=None, names=header_list)
data_frame.to_csv(output_file, index=False)
|
合并多个文件
pandas_concat_rows_from_multiple_files.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | import pandas as pd
import glob
import os
input_path = r"D:\code\foundations-for-analytics-with-python\csv"
output_file = r"output_files\12output.csv"
all_files = glob.glob(os.path.join(input_path,'sales_*'))
all_data_frames = []
for file in all_files:
data_frame = pd.read_csv(file, index_col=None)
all_data_frames.append(data_frame)
data_frame_concat = pd.concat(all_data_frames, axis=0, ignore_index=True)
data_frame_concat.to_csv(output_file, index = False)
|
求和和求平均值
pandas_sum_average_from_multiple_files.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import pandas as pd
import glob
import os
input_path = r"D:\code\foundations-for-analytics-with-python\csv"
output_file = r"output_files\12output.csv"
all_files = glob.glob(os.path.join(input_path,'sales_*'))
all_data_frames = []
for input_file in all_files:
print(input_file)
data_frame = pd.read_csv(input_file, index_col=None)
print(data_frame)
sales = pd.DataFrame([float(str(value).strip('$').replace(',',''))
for value in data_frame.loc[:, 'Sale Amount']])
total_cost = sales.sum()
average_cost = sales.mean()
data = {'file_name': os.path.basename(input_file),
'total_sales': total_cost,
'average_sales': average_cost}
all_data_frames.append(pd.DataFrame(
data, columns=['file_name', 'total_sales', 'average_sales']))
data_frames_concat = pd.concat(all_data_frames, axis=0, ignore_index=True)
data_frames_concat.to_csv(output_file, index = False)
|
XLS
使用pandas读写xls
pandas_parsing_and_write_keep_dates.py
1 2 3 4 5 6 7 8 9 | import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, sheetname='january_2013')
writer = pd.ExcelWriter(output_file)
data_frame.to_excel(writer, sheet_name='jan_13_output', index=False)
writer.save()
|
过滤特定行
- 销售额大于1400的记录
pandas_value_meets_condition.py
1 2 3 4 5 6 7 8 9 10 11 12 13 | import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)
data_frame_value_meets_condition = \
data_frame[data_frame['Sale Amount'].astype(float) > 1400.0]
writer = pd.ExcelWriter(output_file)
data_frame_value_meets_condition.to_excel(
writer, sheet_name='jan_13_output', index=False)
writer.save()
|
- 指定日期的
pandas_value_in_set.py
1 2 3 4 5 6 7 8 9 10 11 12 13 | import string
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)
important_dates = ['01/24/2013','01/31/2013']
data_frame_value_in_set = data_frame[data_frame['Purchase Date'].isin(important_dates)]
writer = pd.ExcelWriter(output_file)
data_frame_value_in_set.to_excel(writer, sheet_name='jan_13_output', index=False)
writer.save()
|
- 其他条件
startswith , endswith , match和search等。
pandas_value_matches_pattern.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)
data_frame_value_matches_pattern = data_frame[
data_frame['Customer Name'].str.startswith("J")]
writer = pd.ExcelWriter(output_file)
data_frame_value_matches_pattern.to_excel(
writer, sheet_name='jan_13_output', index=False)
writer.save()
|
选取特定列
- iloc基于index选取第2和第5列
1 2 3 4 5 6 7 8 9 10 11 12 13 | import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)
data_frame_column_by_index = data_frame.iloc[:, [1, 4]]
writer = pd.ExcelWriter(output_file)
data_frame_column_by_index.to_excel(
writer, sheet_name='jan_13_output', index=False)
writer.save()
|
- loc基于列名选取第2和第5列
pandas_column_by_name.py
1 2 3 4 5 6 7 8 9 10 11 12 13 | import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)
data_frame_column_by_name = data_frame.loc[:, ['Customer ID', 'Purchase Date']]
writer = pd.ExcelWriter(output_file)
data_frame_column_by_name.to_excel(
writer, sheet_name='jan_13_output', index=False)
writer.save()
|
操作所有sheet
- 选取销售额大于2000的行
pandas_value_meets_condition_all_worksheets.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, sheetname=None, index_col=None)
row_output = []
for worksheet_name, data in data_frame.items():
row_output.append(data[data['Sale Amount'].replace('$', '').
replace(',', '').astype(float) > 2000.0])
filtered_rows = pd.concat(row_output, axis=0, ignore_index=True)
writer = pd.ExcelWriter(output_file)
filtered_rows.to_excel(writer, sheet_name='sale_amount_gt2000', index=False)
writer.save()
|
- loc基于列名选取所有sheet的第2和第5列
pandas_value_meets_condition_all_worksheets.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, sheet_name=None, index_col=None)
column_output = []
for worksheet_name, data in data_frame.items():
column_output.append(data.loc[:, ['Customer Name', 'Sale Amount']])
selected_columns = pd.concat(column_output, axis=0, ignore_index=True)
writer = pd.ExcelWriter(output_file)
selected_columns.to_excel(
writer, sheet_name='selected_columns_all_worksheets', index=False)
writer.save()
|
操作部分sheet
- 选取销售额大于2000的行
pandas_value_meets_condition_set_of_worksheets.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
my_sheets = [0,1]
threshold = 1900.0
data_frame = pd.read_excel(input_file, sheetname=my_sheets, index_col=None)
row_list = []
for worksheet_name, data in data_frame.items():
row_list.append(data[data['Sale Amount'].replace('$', '').
replace(',', '').astype(float) > threshold])
filtered_rows = pd.concat(row_list, axis=0, ignore_index=True)
writer = pd.ExcelWriter(output_file)
filtered_rows.to_excel(writer, sheet_name='set_of_worksheets', index=False)
writer.save()
|
处理多个excel
- 连接concat
pandas_concat_data_from_multiple_workbooks.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | import pandas as pd
import glob
import os
input_path = "/media/andrew/6446FA2346F9F5A0/code/foundations-for-analytics-\
with-python/excel"
output_file = "pandas_output.xls"
all_workbooks = glob.glob(os.path.join(input_path,'*.xls*'))
data_frames = []
for workbook in all_workbooks:
all_worksheets = pd.read_excel(
workbook, sheet_name=None, index_col=None)
for worksheet_name, data in all_worksheets.items():
data_frames.append(data)
all_data_concatenated = pd.concat(data_frames, axis=0, ignore_index=True)
writer = pd.ExcelWriter(output_file)
all_data_concatenated.to_excel(
writer, sheet_name='all_data_all_workbooks', index=False)
writer.save()
|
- 求和
pandas_sum_average_multiple_workbooks.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | import pandas as pd
import glob
import os
input_path = "/media/andrew/6446FA2346F9F5A0/code/foundations-for-analytics-\
with-python/excel"
output_file = "pandas_output.xls"
all_workbooks = glob.glob(os.path.join(input_path,'*.xls*'))
data_frames = []
for workbook in all_workbooks:
all_worksheets = pd.read_excel(workbook, sheetname=None, index_col=None)
workbook_total_sales = []
workbook_number_of_sales = []
worksheet_data_frames = []
worksheets_data_frame = None
workbook_data_frame = None
for worksheet_name, data in all_worksheets.items():
total_sales = pd.DataFrame(
[float(str(value).strip('$').replace(',','')) for value in
data.ix[:, 'Sale Amount']]).sum()
number_of_sales = len(data.loc[:, 'Sale Amount'])
average_sales = pd.DataFrame(total_sales / number_of_sales)
workbook_total_sales.append(total_sales)
workbook_number_of_sales.append(number_of_sales)
data = {'workbook': os.path.basename(workbook),
'worksheet': worksheet_name,
'worksheet_total': total_sales,
'worksheet_average': average_sales}
worksheet_data_frames.append(
pd.DataFrame(data,
columns=['workbook', 'worksheet', 'worksheet_total',
'worksheet_average']))
worksheets_data_frame = pd.concat(
worksheet_data_frames, axis=0, ignore_index=True)
workbook_total = pd.DataFrame(workbook_total_sales).sum()
workbook_total_number_of_sales = pd.DataFrame(
workbook_number_of_sales).sum()
workbook_average = pd.DataFrame(
workbook_total / workbook_total_number_of_sales)
workbook_stats = {'workbook': os.path.basename(workbook),
'workbook_total': workbook_total,
'workbook_average': workbook_average}
workbook_stats = pd.DataFrame(workbook_stats,
columns=['workbook', 'workbook_total',
'workbook_average'])
workbook_data_frame = pd.merge(
worksheets_data_frame, workbook_stats, on='workbook', how='left')
data_frames.append(workbook_data_frame)
all_data_concatenated = pd.concat(data_frames, axis=0, ignore_index=True)
writer = pd.ExcelWriter(output_file)
all_data_concatenated.to_excel(
writer, sheet_name='sums_and_averages', index=False)
writer.save()
|
使用excel绘制图表
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | import pandas as pd
import random
# Some sample data to plot.
cat_1 = ['y1', 'y2', 'y3', 'y4']
index_1 = range(0, 21, 1)
multi_iter1 = {'index': index_1}
for cat in cat_1:
multi_iter1[cat] = [random.randint(10, 100) for x in index_1]
# Create a Pandas dataframe from the data.
index_2 = multi_iter1.pop('index')
df = pd.DataFrame(multi_iter1, index=index_2)
df = df.reindex(columns=sorted(df.columns))
# Create a Pandas Excel writer using XlsxWriter as the engine.
excel_file = 'legend.xlsx'
sheet_name = 'Sheet1'
writer = pd.ExcelWriter(excel_file, engine='xlsxwriter')
df.to_excel(writer, sheet_name=sheet_name)
# Access the XlsxWriter workbook and worksheet objects from the dataframe.
workbook = writer.book
worksheet = writer.sheets[sheet_name]
# Create a chart object.
chart = workbook.add_chart({'type': 'line'})
# Configure the series of the chart from the dataframe data.
for i in range(len(cat_1)):
col = i + 1
chart.add_series({
'name': ['Sheet1', 0, col],
'categories': ['Sheet1', 1, 0, 21, 0],
'values': ['Sheet1', 1, col, 21, col],
})
# Configure the chart axes.
chart.set_x_axis({'name': 'Index'})
chart.set_y_axis({'name': 'Value', 'major_gridlines': {'visible': False}})
# Insert the chart into the worksheet.
worksheet.insert_chart('G2', chart)
# Close the Pandas Excel writer and output the Excel file.
writer.save()
|
参考资料:http://pandas-xlsxwriter-charts.readthedocs.io/